

LA FINESTRA

PER MIGLIORARE L'EFFICIENZA ENERGETICA DEGLI EDIFICI

LA FINESTRA:

COMPONENTE CHIAVE PER MIGLIORARE L'EFFICIENZA ENERGETICA DEGLI EDIFICI.

Il mercato europeo del serramento 2006 è suddiviso in modo da ottenere la suddivisione secondo il materiale utilizzato per realizzare il telaio fisso e mobile:

45% PVC 28% legno 25% alluminio

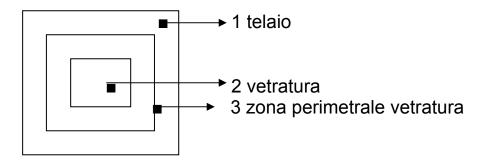
Il mercato del serramento in PVC nelle principali nazioni è il seguente:

80% Inghilterra 50% Germania/Francia/Austria 22% Spagna/Turchia 15% Italia

Mercato europeo serramenti 2006:

82 milioni di finestre/anno

(valore espresso in WU = windows unit pari a $1.3 \times 1.3 = 1.69 \text{ m}^2$)


Sostituire i serramenti esistenti in Europa di bassa efficienza con elevata efficienza energetica si otterrebbe un risparmio (stima):

40.000 milioni Kwh risparmiati 8,60 milioni tonnellate di CO₂ risparmiate

Studio condotto da Istituto Hermes per Eppa e PVCplus.

1) FINESTRE E ISOLAMENTO TERMICO

La norma europea EN 10077 – 1 definisce i parametri necessari per il calcolo della trasmittanza termica di un componente quale il serramento:

mediante la relazione:

$$U_w = (A_f U_f + A_g U_g + I_g \Psi_g)/A_w$$

 U_w = trasmittanza termica finestra (W/m²K)

A_f = superficie visibile telaio incluso spessori "disperdenti" (m²)

 U_f = trasmittanza termica telaio (W/m²K)

A_a = superficie visibile della vetratura (m²)

U_a = trasmittanza termica vetratura (W/m²K)

 I_a = perimetro della vetratura (m)

 Ψ_{α} = trasmittanza termica lineare del perimetro vetratura (W/mK)

 $A_w =$ area totale serramento (m²)

Un interessante esercizio di verifica di quanto incide la trasmittanza termica del telaio rispetto al vetro in funzione della superficie dell'intera finestra è la seguente:

Dimensione	Area	Rapporto in %	Perimetro vetro	U _W (W/m ² K)	
(mm)	(m ²)	telaio/vetro	(m)	Canaletta	Canaletta
, ,	, ,		` ,	All.	Inox
800 x 500	0,40	66/34	1,60	1,69	1,59
1230 x 1480	1,82	34/66	4,42	1,43	1,37
2250 x 2650	5,96	20/80	8,80	1,30	1,26

2) CLASSIFICAZIONE SERRAMENTI

In seguito alle esperienze ed alle proposte della direttiva europea sull'efficienza energetica degli edifici 2002/91 ed al progetto di norma pr EN 15217, viene proposta una classificazione dei serramenti esterni in base al valore di trasmittanza termica:

 $\begin{array}{cccc} \underline{CLASSE} & A & U_W \leq 1,30 & W/m^2K \\ \underline{CLASSE} & B & U_W \leq 2,00 & W/m^2K \\ \underline{CLASSE} & C & U_W \leq 3,00 & W/m^2K \\ \underline{CLASSE} & D & U_W \leq 5,00 & W/m^2K \end{array}$

Per i calcoli effettuati vengono considerati 4 tipologie. I serramenti sono definiti in base al valore di trasmittanza termica presentata con i seguenti parametri:

dimensione: unità standard $U_W = 1,30 \times 1,30 \text{ m} = 1,69 \text{ m}^2$

CLASSE	TIPOLOGIA	U_W	U_F	U_{G}	Ψ_{g}
А	Buon isolamento	1,2	1,2	1,1	0,040
В	Isolamento medio	1,7	1,6	1,5	0,080
С	Basso isolamento	3,0	2,4	3,3	0
D	Isolamento molto basso	4,6	2,4	5,7	0

3) CONSUMO DI ENERGIA

La perdita di energia attraverso un serramento riferito all'unità WU di 1,69 m² è approssimata dalla relazione:

$$Q_{WU} = 84 \cdot U_W \cdot A_W \text{ KWh/anno}$$

Questa relazione tiene conto di zone con gradi giorno relativi alla fascia climatica media europea.

Il fattore "84" può variare in funzione della latitudine:

zone marine 50

zone alpine 110

Nel caso si volesse esprimere l'energia consumata in altre unità di misura di utilizzo tradizionale valgono le seguenti conversioni:

10 Kwh/anno = 1 litro petrolio

10 Kwh/anno = 1 m³ gas naturale

1 litro petrolio = 2,7 Kg CO₂

1 m³ gas naturale = 1,1 Kg CO₂

Possono essere calcolati i seguenti dati: (serramento pari a 1 WU = 1,69 m²)

Finestra di 1 WU	QWU	Consumo	CO ₂ (Kg)
	KWh/anno	litri gasolio	
CLASSE A	170	17	46
CLASSE B	241	24	65
CLASSE C	426	43	115
CLASSE D	653	65	176

Per 1 milione di WU:

	Giga Wh/anno	Milione I	Ton CO ₂
CLASSE A	170	17	46000
CLASSE B	241	24	65000
CLASSE C	426	43	115000
CLASSE D	653	65	176000

Utilizzando gas naturale per 1 milione di WU:

	Giga Wh/anno	Milioni m ³	Ton CO ₂
CLASSE A	170	17	19000
CLASSE B	241	24	27000
CLASSE C	426	43	47000
CLASSE D	653	65	72000

4) RISPARMIO DI ENERGIA

Devono essere stimati alcuni parametri utili per il calcolo del risparmio potenziale di energia in seguito all'ipotesi di sostituire i serramenti esistenti con altri di classe superiore.

	Europa dei 27
Popolazione	747.000.000
Numero totale di WU	82 milioni

1° caso: minimo risparmio

Sostituzione di serramento Classe B con Classe C.

Calcolo riferito a 82 milioni di WU con una ripartizione media europea di fonti energetiche per riscaldamento pari a 2/3 petrolio e 1/3 gas naturale.

	Consumo petrolio	CO ₂	Consumo gas	CO ₂
	Milioni I	MegaTon	Milioni m³	MegaTon
CLASSE B	1320	3,575	648	0,729
CLASSE C	2365	6,325	1191	1,269
$\Delta = C - B$	1045	2,75	513	0,54

Risparmio:

- 1) gasolio + gas = 1558 = 15580 milioni di KWh/anno
- 2) 3,29 mega tonnellate di CO₂

2° caso: massimo risparmio

Sostituisce il serramento di Classe D con Classe A Calcolo riferito a 82 milioni di WU con una ripartizione media europea di fonti energetiche per riscaldamento pari a 2/3 petrolio e 1/3 gas naturale.

	Consumo petrolio	CO ₂	Consumo gas	CO ₂
	Milioni I	MegaTon	Milioni m³	MegaTon
CLASSE A	935	2,53	459	0,513
CLASSE D	3575	9,68	1755	1,944
$\Delta = D - A$	2640	7,15	1296	1,43

Risparmio:

- 1) gasolio + gas = 3936 = 3960 milioni di KWh/anno
- 2) 8,58 mega tonnellate di CO₂

NOTA:

Il serramento combinato con il sistema di oscurante ad avvolgibile con cassonetto crea un'intercapedine d'aria che permette di ottenere i seguenti vantaggi di isolamento termico:

- il valore di U globale migliore del 25%
- il valore di U globale per le ore notturne scende sotto il valore 1 W/m²K per serramenti di Classe A senza costi eccessivi.